Semantic Knowledge Base Patent and its Indirect Link to AI Milestones
🌐 语义知识库专利与人工智能关键里程碑的间接关联
1. Patent Overview
1. 专利概述
Patent Title:
Method and System of Transforming Net Content into Optimized Knowledge Base for Universal Machine Learning (Based on Bayesian Theory)
专利标题:
《基于贝叶斯理论的网络内容转化为通用机器学习优化知识库的方法与系统》
This patent introduces a Bayesian-based framework for restructuring web content into an optimized knowledge network tailored for machine learning applications. It emphasizes probabilistic relevance modeling and semantic structuring of information nodes—an early and conceptually rich approach to building semantic search networks.
该专利提出了一种基于贝叶斯理论的框架,用于将网络内容重构为优化的知识网络,专为机器学习应用而设计。其核心在于概率相关性建模与信息节点的语义结构化,是构建语义搜索网络的早期且概念深远的方法。
2. Indirect Connections to Key AI Milestones
2. 与关键AI发展阶段的间接关联
Transformer Architecture
Transformers rely on self-attention mechanisms to model contextual relationships. The patent's probabilistic estimation of semantic relevance prefigures the idea of dynamic weighting found in attention layers.
变换器架构:
Transformer 利用自注意力机制建模上下文关系。该专利中的语义相关性概率估计,预示了注意力机制中动态加权的思想。
DeepMind Systems (AlphaGo, AlphaFold, MuZero)
DeepMind applies Bayesian learning and search optimization. The patent’s semantic path optimization via Bayesian theory mirrors this in the knowledge selection and organization process.
DeepMind系统(如AlphaGo、AlphaFold、MuZero):
DeepMind广泛采用贝叶斯学习与搜索优化策略,该专利中通过贝叶斯路径优化进行知识选择与组织,与此高度相似。
LLMs and Semantic Embeddings
Modern LLMs benefit from structured semantic representations and context-sensitive token embeddings. The patented system’s transformation of content into a structured, machine-usable format aligns with retrieval-augmented generation and KGLMs.
大语言模型(LLMs)与语义嵌入:
现代大模型依赖结构化的语义表示与上下文感知的嵌入方式。该专利将内容转化为结构化、机器可用形式,与检索增强生成(RAG)与知识图谱语言模型(KGLM)高度契合。
3. Visual Mapping of Conceptual Connections
3. 概念关联的视觉映射
yaml复制编辑Patent Core: Semantic Knowledge Base (Bayesian)
|
|—— Transformer: Probabilistic Semantic Weighting ↔ Self-Attention
|—— DeepMind: Bayesian Path Optimization ↔ Strategic Planning
|—— LLMs: Structured Knowledge ↔ Semantic Embeddings
|—— PageRank/HyperRank: Semantic Link Analysis ↔ Influence Propagation
markdown复制编辑专利核心:语义知识库(贝叶斯基础)
|
|—— Transformer:概率语义加权 ↔ 自注意力机制
|—— DeepMind:贝叶斯路径优化 ↔ 战略规划搜索
|—— 大语言模型:结构化知识 ↔ 语义嵌入
|—— PageRank/HyperRank:语义链接分析 ↔ 影响力传播
4. Comparative Summary
4. 对比摘要
项目 | 专利中的机制 | 相对应的AI发展机制 |
---|---|---|
Transformer | 概率语义加权 | 注意力机制(Self-Attention) |
DeepMind | 贝叶斯路径优化 | 模型价值搜索与规划 |
大语言模型 | 语义结构化内容转化 | 语义嵌入与上下文表示 |
PageRank/HyperRank | 节点语义重要度排序 | 网络影响力传播机制 |
5. Suggested References
5. 推荐参考文献
- Vaswani et al., Attention is All You Need (2017) 瓦斯瓦尼等,《注意力机制即一切》,2017
- Silver et al., Mastering the game of Go with deep neural networks and tree search (2016) 西尔弗等,《通过深度神经网络与树搜索掌握围棋》,2016
- Radford et al., Language Models are Few-Shot Learners (2020) 拉德福等,《语言模型是少样本学习者》,2020
- Google's PageRank Patent 谷歌 PageRank 原始专利
- Baidu’s HyperRank Technical Whitepaper 百度《HyperRank 技术白皮书》
Comments (0)
No comments